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Abstract
The optical conductivity of graphene is studied in detail. It is shown how crossover from
nonlinear to linear behaviour of the current density occurs when the frequency of the external
electric field is increased. We also study electron–hole pair creation in bilayer graphene and
show that its rate in a static electric field is determined by a power law as for single-layer
graphene but with a different exponent. Subsequently, transport in carbon nanotubes is studied.

1. Introduction

One of the most amazing properties of graphene is that its zero-
field conductivity does not disappear in the limit of vanishing
carrier density but instead turns out to be of the order of the
conductivity quantum e2/h. However, it is the conductivity
that is quantized in graphene, as opposed to the case for other
transport phenomena, where the conductance is quantized.

The conductivity of graphene varies almost linearly with
the carrier density [1, 2]. However, it exhibits a plateau
near the neutrality point. There is much evidence that
in early experiments [1, 2], Coulomb impurities on the
substrate were the major impurities affecting the conductivity
of graphene [3–5]. Numerical simulations [3] show that
the minimum conductivity of graphene with point scatterers
is close to 4

π
e2

h and it is approximately three times larger
for Coulomb scatterers. The statistics of random voltage
fluctuations generated by Coulomb impurities in the substrate
was found in [4]. The transition to the linear regime when the
gate voltage Vg (controlling the carrier density in graphene)
increases can be viewed as a percolation transition in this
random potential: paddles of electrons and holes generated in
the random potential V increase with Vg and finally carriers of
one type percolate and spread over the whole graphene sample.

The mean square deviation
√

V 2 determines the value of the
gate voltage at which this happens. Electron–hole paddles
were indeed observed in experiment [6]. More detailed study
of the minimum conductivity, based on the picture described,
was carried in [5]. All of this implies that the minimum
conductivity of graphene is not universal as it might seem at
first sight.

There are three theoretical values for the minimum
conductivity of graphene:

σmin
1 = 4

π

e2

h
(1)

[7–15],

σmin
2 = π

2

e2

h
(2)

[7, 13, 16–18] and

σmin
3 = π

e2

h
(3)

[19]. It was shown that the minimum conductivity of graphene
is sensitive to the order of taking certain limits (notably, ω → 0
and η → 0, where ω is the frequency of the external electric
field and η is the impurity scattering rate; see section 4),
and all three values (1)–(3) were obtained in this way [20].
σmin

1 was obtained from the Kubo [7, 8, 10, 11, 14, 15] and
the Landauer [9, 12, 15] formulae. σmin

2,3 were obtained from
the Kubo formula only. In [18], the current was obtained
by studying the dynamics of electron–hole pair creation after
switching on an electric field. Since neither the Kubo formula
nor the Landauer formula was used in that paper, all difficulties
associated with regularization procedures fell away. σmin

2
was observed in experiments on light scattering by graphene
[21, 22]. σmin

1 was also experimentally observed [23–26].
Experimental and theoretical studies concerning bilayer

graphene are much less common than ones concerning single-
layer graphene. Koshino and Ando [27] using the self-
consistent Born approximation found that for dirty graphene
σmin = 8

π
e2

h , and in the opposite limit of clean graphene

σmin = 24
π

e2

h , which is six times larger than for single-layer
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graphene. Katsnelson [28] used the Landauer formula and
obtained the completely different result σmin = 2e2/h. Cserti
[13] found that σmin = 4J

π
e2

h for dirty and σmin = π J
2

e2

h for
clean graphene using the Kubo formula (J = 1 for single-layer
graphene and J = 2 for bilayer graphene).

For a strong electric field E , the current in the system of
two-dimensional Dirac fermions is determined by the creation
of electron–hole pairs with the rate ∝E

3
2 (see section 5). This

phenomenon is called the Schwinger mechanism [29–31]. This
implies that the result of [18] is not applicable when the
frequency of the external electric field ω → 0. Therefore,
one has to study the method of [18] in more detail. After
giving a modification of that method in section 2, we will
present some of its applications in sections 3 and 4. Then
we study the Schwinger mechanism in bilayer graphene in
section 5 (without screening effects). We mention here that the
consideration of the bilayer graphene in this paper is limited to
the simplest case of unbiased graphene, when there is no gap
between the parabolic bands. In section 6, we study transport
in carbon nanotubes. In the last section 7, a summary of the
results obtained is given and conclusions are drawn.

2. Dynamics of electron–hole pair creation in
graphene

The following method was used to calculate the minimum
conductivity of graphene in [18]. A uniform electric field
with the vector potential A = (cEt, 0, 0) is switched on at
the moment t = 0 in the system of particles described by the
Dirac equation. Then the evolution of the wavefunction of the
particles with initial values (6) is studied, treating the electric
field as a perturbation. The current density is given in the
linear approximation by (16). The authors of this paper claim
that their result gives the true value for the dc conductivity
of graphene. However, as will be seen from the subsequent
discussion, this method is not applicable for finite graphene
samples, finite field strengths and low frequencies ω → 0. We
will modify their method and study various consequences. This
will allow for better understanding of the method and obtaining
some results that cannot be found with the original formulation.

To treat single-layer and bilayer graphene on an equal
footing, let us do the following [13]. We rewrite the
Hamiltonian in a unified form:

ĤJ = g

(
0 (q̂x − iq̂y)

J

(q̂x + iq̂y)
J 0

)
(4)

where J = 1, g = vF corresponds to single-layer graphene
(vF ≈ 106 m s−1 is the Fermi velocity) and J = 2, g = 1/2m
corresponds to bilayer graphene (where m is the effective
mass). Equation (4) can be written in a more convenient way
as

ĤJ = Ω(q)σ̂ (5)

by introducing the vector Ω(q) = gq J (cos Jϕ, sin Jϕ), where
q = (qx, qy) = q(cosϕ, sinϕ), and σ̂ = (σ̂x , σ̂y) are the Pauli
matrices.

Let ψ0(q) be the eigenfunctions of the Hamiltonian (5).
Then, in the absence of external fields,

ψ0(q) = 1√
2

(
e−iJϕ

1

)
(6)

and the dispersion of particles ε(q) is given by

ε(q) = gq J . (7)

At the moment t = 0, a uniform electric field directed along the
x-axis with the frequency ω and the scalar potential Ex cosωt
is switched on. Then the spinor ψ(t,q) obeys the following
equation:

i
∂

∂ t
ψ(t,q) = Ω(q)σ̂ψ(t,q) + ieE cosωt

∂

∂qx
ψ(t,q) (8)

where we used the momentum representation i∂/∂qx of the
position operator x̂ (we assume for brevity that h̄ = 1).

Performing the Laplace transform of (8) we get

ipψ̄(p,q)− iψ0(q) = Ω(q)σ̂ ψ̄(p,q)

+ 1

2
ieE

∂

∂qx

(
ψ̄(p + iω,q)+ ψ̄(p − iω,q)

)
(9)

where ψ(p,q) = ∫∞
0 ψ(t,q)e−pt dt . We are going to treat the

term proportional to E in (9) as a perturbation; then we will
find the conditions when this procedure is justified. Then we
obtain

ψ̄(p,q) = ψ0(q)
p + iε(q)

+ eE

p + iΩ(q)σ̂
∂

∂qx

1

2
ψ0(q)

×
(

1

p + iε(q)+ iω
+ 1

p + iε(q)− iω

)
. (10)

We represent the Laplace transform of the spinor ψ̄(p,q) in
the form

ψ̄(p,q) = ψ0(q)

p + iε(q)
+ eEξ(p,q). (11)

It is convenient to rewrite ξ(p,q) in the form

ξ(p,q) = −i
∂ε(q)
∂qx

ψ0(q)
p + iε(q)

1

2

(
1

(p + iε(q)+ iω)2

+ 1

(p + iε(q)− iω)2

)
+ J

2
√

2

(
1

p + iε(q)+ iω

+ 1

p + iε(q)− iω

)
iqy

q2

1

p2 + ε(q)2

×
[

p

(
1
0

)
− i(�x(q)+ i�y(q))

(
0
1

)]
. (12)

Taking the inverse Laplace transform of (12), we find

ξ(t,q) = −i
∂ε(q)
∂qx

ψ0(q)

×
[

1

ω2
(1 − cosωt)− 1

ω
t sinωt

]
ψ0(q)e−iε(q)t

+ J

4
√

2
e−iJϕ iqy

q2ε(q)

(
1
0

)[
eiε(q)t − e−iε(q)t−iωt

2iε(q)+ iω

+ eiε(q)t − e−iε(q)t+iωt

2iε(q)− iω
+ 2e−iε(q)t sinωt

ω

]

2



J. Phys.: Condens. Matter 21 (2009) 445802 N M Vildanov

− J

4
√

2

iqy

q2ε(q)

(
0
1

)[
eiε(q)t − e−iε(q)t−iωt

2iε(q)+ iω

+ eiε(q)t − e−iε(q)t+iωt

2iε(q)− iω
− 2e−iε(q)t sinωt

ω

]
. (13)

The current density is given by the following integral over the
Brillouin zone:

jx(t) = e
∫

BZ

d2q

(2π)2
ψ(t,q)†

∂Ω(q)σ̂
∂qx

ψ(t,q). (14)

We are interested only in the term linear in electric field E
in (14). Taking into account that initially there was no current
in the system, i.e.

jx(0) = e
∫

BZ

d2q

(2π)2
ψ0(q)†

∂Ω(q)σ̂
qx

ψ0(q) = 0 (15)

we find

jx(t) = e2 E
∫

BZ

d2q

(2π)2

(
ψ(t,q)†

∂Ω(q)σ̂
∂qx

ξ(t,q)+ h.c.

)

(16)
where h.c. denotes the Hermitian conjugate.

Substituting (13) into (16), proceeding to polar coordi-
nates, and changing the variables ε = gq J , we get

jx(t) = e2 E J

2πh

∫ ∞

0
dε
∫ 2π

0
sin2 ϕdϕ

×
[

sin
(
ε − ω

2

)
t cos

(
ε + ω

2

)
t

2ε − ω

+ sin
(
ε + ω

2

)
t cos

(
ε − ω

2

)
t

2ε + ω

]
. (17)

Noting that the second term in brackets in (17) can be obtained
from the first by making the substitution ε → −ε and
performing angle integration, we obtain

jx(t) = e2 E J

2h

∫ ∞

−∞
dε

sin
(
ε − ω

2

)
t cos

(
ε + ω

2

)
t

2ε − ω
. (18)

Using the elementary formula cos(ε + 1
2ω)t = cos(ε −

1
2ω)t cosωt − sin(ε − 1

2ω)t sinωt , we finally come to

jx(t) = e2 E J

h

∫ ∞

−∞
sin (2ε − ω) t

2ε − ω
cosωt dε

= e2 E

h

π J

2
cosωt (19)

(here we took into account the additional factor 4, due to spin
and valley degeneracy).

Let us make an interesting observation concerning the
factor sin(2ε − ω)t/(2ε − ω) in (19). When t → ∞ this
factor tends to πδ(ε − ω/2). This means that in the limit
t → ∞ only the vicinity of ε ≈ ω/2 is substantial in the
integral in (19). This has a simple explanation: in the case of
normal incidence, when an electron in a valence band absorbs
a photon, the electron momentum is unchanged because the
wavevector of the incident wave is normal to the graphene
surface (in general, the change in momentum of the electron is
of the order of ω/c � ω/vF and can be neglected). Therefore,

the electron in the valence band should have energy −ω/2 to
absorb a photon of frequency ω and transform to an electron
in the conduction band with energy ω/2 [22]. This fact will be
useful in section 3 where we prove that the Fourier transform
in (8) is justified for high frequencies and large sample sizes.

One can treat the term in (9) proportional to E as a
perturbation if eEξ(p,q) is much less thanψ0(q)/(p + iε(q))
at momenta gq J ∼ ω, which means eE/ω � (ω/g)

1
J .

Introducing the electrical length lel = (g/eE)
1

J+1 (lel =√
vFh̄/eE for single-layer graphene and lb

el = (meE)−
1
3 for

bilayer graphene) and group velocity u = |∂ε(q)/∂q| ∼
g(ω/g)

J−1
J , one can restate this condition in a more transparent

form as lel 	 u/ω. For example, in the case of single-
layer graphene, it has a simple explanation: in an electrostatic
field, pairs of electrons and holes are created with the rate
∝E

3
2 , if the system size exceeds the electrical length lel [29].

However, for an electric field with a high enough frequency
ω 	 vF/ lel (the group velocity for single-layer graphene is
simply the Fermi velocity vF), the sign of the electric field
changes before the electrons have travelled a distance of the
order of lel. Therefore, we get a linear current in the system.
Thus, one solves the question of the relation of the picture
described to the Schwinger mechanism suggested in [18].

In order to account for the temperature dependence of the
conductivity, one should introduce the factor tanh(ε/2T ) in the
integral in (18). This gives an extra factor tanh(ω/4T ) in (19).
When ω 	 T one finds (19).

3. Finite graphene samples

In this section, we will study finite graphene samples with
length L. For definiteness, we will consider the single-layer
graphene. Initially the spinor ψ(t,q) is equal to

ψ0(q) = 1√
2

( qx −iqy

ε(q)

1

)
(20)

where ε(q) =
√

q2
x + q2

y (we will drop the Fermi velocity vF

in some of the formulae; it can be easily restored in each case
and this will not lead to confusion). At the moment t = 0, a
uniform electric field E(t) = E cosωt with the frequency ω
and the scalar potential

U(x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− E(t)L

2
for −∞ < x < − L

2

E(t)x for − L
2 < x < L

2

E(t)L

2
for L

2 < x < ∞
(21)

is switched on. The frequency ω determines the characteristic
energy scale in the system. It will turn out that in the limit
ωL 	 vF the frequency dependence of the conductivity
disappears for large times ωt 	 1. The Fourier transform of
the Dirac equation for spinor ψ(t,q) now takes the form

i
∂

∂ t
ψ(t,q) = qx σ̂xψ(t,q) + qyσ̂yψ(t,q)

− eE(t)L

2

∫ − L
2

−∞
e−iqx xψ(t, x, qy) dx

3
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+ eE(t)
∫ L

2

− L
2

x e−iqx xψ(t, x, qy) dx

+ eE(t)L

2

∫ ∞

L
2

e−iqx xψ(t, x, qy) dx . (22)

Using the representation

ψ(t, x, qy) =
∫ ∞

−∞
dk

2π
eikxψ(t, k, qy) (23)

and integrating with respect to x using the formulae
∫ − L

2

−∞
ei(k−q)x dx = ie− iL(k−q)

2

q − k + iδ
= ie− iL(k−q)

2

q − k
+πδ(k−q) (24)

∫ ∞

L
2

ei(k−q)x dx = ie
iL(k−q)

2

k − q + iδ
= ie

iL(k−q)
2

k − q
+ πδ(k − q) (25)

we obtain that the sum of three integrals in (22) transforms to
the form

ieE(t)
∫ ∞

−∞
dk

2π
ψ(t, k, qy)

×
(

L
cos (k−qx )L

2

k − qx
+ 2

∂

∂qx

sin (k−qx )L
2

k − qx

)

. (26)

In the limit ωL 	 vF, for k, q ∼ ω (as we have seen in
section 2), we can substitute sin (k−q)L

2 /(k − q) by πδ(k − q).
Then the second term in (26) gives exactly ieE∂/∂qx and the
first is of the order of vF/ωL and can be neglected. Finally, (22)
reduces to (8).

We can conclude that for large sample sizes and high
frequencies ωL 	 vF the minimum conductivity of graphene
is σmin

2 = π
2

e2

h . This can be qualitatively explained from the
point of view of Ziegler’s work [20]. If one identifies the
impurity scattering rate η with the frequency vF/L of scattering
by the boundaries of the sample, then the limitω 	 η, in which
the Kubo formula gives the conductivity σmin

2 , is equivalent to
ωL 	 vF. For the particle to feel the frequency dependence of
the external electric field, the frequency ω must be larger than
the impurity scattering rate η or the frequency of scattering by
the boundaries vF/L. Therefore, one can conclude that in the
inverse limit ωL � vF the minimum conductivity should be
σmin

1 = 4
π

e2

h . However, we will see that a special configuration
is needed for this to happen.

Let us check whether the validity conditions of the
theory are satisfied in experiments on light scattering by
graphene [21, 22]. The width of the light beam is L = 30 μm.
The light frequency ω ≈ 500 THz. The strength of the electric
field in the light wave E = 1000 V m−1. This gives for the
electrical length lel ≈ 1 μm and for another length scale in
the problem lω = vF/ω ≈ 1 nm. We see that the conditions
lel 	 vF/ω, L 	 vF/ω are satisfied. Let us check the
analogous conditions for bilayer graphene. The effective mass
is approximately m ≈ 0.044me , where me is the electronic
mass [32]. This gives for the electrical length lb

el ≈ 100 nm
and for the length scale lω = √

h̄/mω ≈ 1 nm. The conditions
lω � L, lω � lb

el are also satisfied in this case.
This modified method allows not only for a more rigorous

derivation of the minimum conductivity of graphene but also
for one to go further and investigate an interesting case (see
section 4).

4. Crossover from σ min
1 to σ min

2

The following configuration is used to measure the conduc-
tivity of graphene in actual experiments. It was theoretically
studied in [9, 12]. A graphene ribbon of length L and width
W 	 L is connected to two doped electrodes with potential
V0 < 0 and Fermi energy EF = vFkF = −V0 at its boundaries
x = ±L/2. The ribbon is kept at the neutrality point at which
the carrier density equals zero. If kFL 	 1 then the trans-
mission probabilities computed in [9, 12] are given by Tn =
1/ cosh2(kn L), where kn = 2πn/W , n = 0,±1,±2, . . ..
Substituting them in the Landauer formula

G = e2

h

∑

n

Tn (27)

one obtains for the conductance G = 4e2

πh
W
L and consequently

for the conductivity σ = 4
π

e2

h .
The Landauer formalism cannot be applied for high

frequencies ωL 	 vF [33]. However, this is exactly the
case considered in section 3. We can try to apply the same
considerations to the present case. The Fourier transform of
the Dirac equation for electrons moving in a potential

V (x) =
{

V0 for −∞ < x < −L/2 or L/2 < x < ∞
0 for −L/2 < x < L/2

(28)
is

ε(q)ψ0(q) = qx σ̂xψ0(q)+ qyσ̂yψ0(q)+ V0ψ0(q)

− 2V0

∫ ∞

−∞
dk

2π
ψ0(qx − k, qy)

sin kL
2

k
. (29)

One can, at least in principle, obtain the dispersion relation
ε(q) from this linear integral equation. However, we are
interested only in the solution of this equation for high
frequencies. If q L 	 1 and ψ0(q) is a sufficiently smooth
function, then sin(kL/2)/k in (29) can be substituted by πδ(k)
with accuracy of the order of 1/q L. For V0/q L � q , one
obtains that the potential V (x) is smoothed and, therefore,
can be thrown away. This heuristic derivation was based on
the assumption that the spinor ψ(q) is a smooth function of
the momentum q, and ultimately we obtained that it is indeed
smooth and is given by ψ0 from section 2, while the dispersion
relation is given by ε(q, k) = √

q2 + k2. To calculate the
conductivity at the frequency ω, one needs the solution to (29)
for momenta qvF ∼ ω. Now we can apply the results of two
previous sections and obtain the following result.

When the following conditions hold:

ω/vF, kF 	 L kFv
2
F � ω2 L (30)

the conductivity of a graphene ribbon equals σmin
2 = π

2
e2

h ,
i.e. there is a crossover from σmin

1 to σmin
2 when the frequency

of the external field increases.
Ziegler showed [20] that an analogous crossover exists in

dirty graphene: the conductivity of graphene is σmin
1 for ω � η

and σmin
2 for ω 	 η. Here we have shown how it occurs

4
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in clean graphene samples when the parameters of the system
vary.

It seems that this result is of interest from the theoretical
point of view only because the finite capacitance of the
system, which affects the ac conductivity, could complicate the
problem of detection of this crossover in experiments. Besides,
σmin

1 is numerically close to σmin
2 .

5. p–n junctions in bilayer graphene

The current through a wide graphene p–n junction is given by

Ip−n = e2 L

π2

√
eE3

vF
. (31)

Equation (31) can be obtained by finding coefficients of
transmission of electrons through the potential barrier formed
between the electrodes [34]. It can also be obtained by
calculating the rate of electron–hole pair creation in graphene
in a uniform electric field [29]. The formula (31) is valid only
for wide and long p–n junctions for which W, L 	 lel.

Here we will study p–n junctions in bilayer graphene. First
we note that the transmission probabilities found in [34] are
equal to (see also [35])

T (k) = e− πk2

eE = e−π(klel )
2
. (32)

In analogy with this formula, remembering that the electrical
length for bilayer graphene is lb

el = (meE)−
1
3 , one can assume

that for a bilayer graphene p–n junction the transmission
probabilities are given by

Tb(k) = f (klb
el) (33)

where f is an unknown function. The conductance of the
junction can be found using the Landauer formula

G = 4
e2

h

∑

−kF<k<kF

T (k). (34)

For a wide p–n junction W 	 lb
el, one obtains

G = 2e2W

πh

∫ kF

−kF

T (k) dk. (35)

It is easily seen that the conductance of the junction is
proportional to E

1
3 : G ∝ E

1
3 . Now we can estimate the rate

of pair creation b in bilayer graphene: I = G E L = bW L,
from which it follows that b ∼ E

4
3 . From a slightly different

point of view, p–n junctions in bilayer graphene are considered
in [36].

Transmission probabilities Tb(k) can be calculated in a
quasiclassical approximation, in analogy with the single-layer
graphene case [36]. First we proceed to a representation
where the coordinate x plays the role of time, and the
initial problem is represented in the form of an evolution
with the non-Hermitian Hamiltonian i∂/∂x = Ĥ (x). The
x-dependent eigenvalues of this Hamiltonian are given by
κ(x) = ±√k2 − 2m|ε − eEx |. This quantity is imaginary

in the classically forbidden region x1 < x < x2, x1,2 =
±k2/(2meE) (we set ε = 0 for convenience). Now we apply
the adiabatic approximation. Transmission probabilities are
given with exponential accuracy by the formula e−S , where

S = 2
∫ x2

x1

Im κ(x) dx = 4
3 (l

b
elk)

1
3 . (36)

We see that they have the form (33), the integral in (35) being
convergent for large momenta k.

6. Carbon nanotubes

The electron–hole pair creation rate in a static electric field E
for particles described by the Dirac equation is given by (per
conduction channel)

1 = eE

2π
(37)

in one dimension, D = 1, and by

2 = (eE)
3
2

4π2
(38)

in two dimensions, D = 2 [30]. For a long L 	 lel ribbon
with arbitrary width W ,

ribbon = eE

2πW

∑

n

e− πk2
n

eE (39)

where kn are the quantized values of the transverse momenta.
Now we will show how crossover occurs from (38) to (37)
when the ribbon is narrowed. If W 	 lel then the sum in (39)
can be replaced by an integral

eE

2π

∫
dk

2π
e− πk2

eE = (eE)
3
2

4π2
. (40)

However, if there is a zero mode and the contributions of the
other modes are exponentially suppressed in weak fields due to
a gap of the order of vF/W , i.e. W � lel, then only one term
with n = 0 remains in (39):

2 = eE

2πW
. (41)

Multiplying by W , one obtains 1.
The Kubo formula gives the result e2/h for the

conductance of ballistic wires [37] (per conduction channel).
However, the Kubo formula is obtained from linear response
theory and therefore valid only in zero electric field. In
the opposite case of strong electric fields, one can deduce
from (37) that the conductance is the same, e2/h (to obtain
the conductance from (37) one should multiply (37) by the
length of the wire L and divide the result by the voltage drop
V = E L).

What happens for arbitrary values of the electric field
lel ∼ L? From the Luttinger liquid theory, it follows that the
conductance does not depend on the magnitude of the electric
field. Let us give here the proof of this fact taken from [37]
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(with slight modifications). The action for the Luttinger liquid
interacting with an electromagnetic field has the form

S = 1
2

∫
dx dt

[
v2

F(∂xϕ)
2 − (∂tϕ)

2

+ e√
π
(A0∂xϕ − Ax∂tϕ)

]
(42)

where Aμ is the vector potential of the electromagnetic field,
and ρ = ∂xϕ/

√
π , j = −∂tϕ/

√
π are, respectively, charge

and current densities. Varying ϕ, one obtains the equations of
motion

∂2
t ϕ − ∂2

xϕ = e√
π

E(x) (43)

where E(x) = −∂x A0 + ∂t Ax is the strength of the electric
field. We will assume that it is not zero only in the region
0 < x < L and is switched on at t = 0. Then performing the
Laplace transform of (43) gives

p2ϕ − ∂2
xϕ = e√

π
E(x)

1

p
. (44)

The general solution to this equation is

ϕ(p, x) = A(p)epx + B(p)e−px

− e√
π p2

∫ x

−∞
E(y) sinh(x − y)p dy (45)

where A(p) and B(p) are arbitrary constants. The solution to
this equation, limited at x → ±∞, is

ϕ(p, x) = e

2
√
π p2

∫ L

0
E(y)e−py dy

− e√
π p2

∫ x

0
E(y) sinh(x − y)p dy. (46)

The Laplace transform of the current density j (t, 0) =
−∂tϕ(t, 0)/

√
π , whose initial value is set to zero, is given by

j (p, 0) = p√
π
ϕ(p, 0) = e

2
√
π p

∫ L

0
E(y)e−py dy. (47)

Using the Laplace transform of the step function θ(t − y) �
e−py/p, we obtain j = e2V /2π for t > L/vF, where V =∫ L

0 E(y) dy.
This result could be obtained from the Landauer formula,

since the probability of transmission of Dirac quasiparticles
through a barrier is unity for normal incidence (the Klein
paradox).

This derivation for the Luttinger liquid shows that there is
in principle no difference for the cases of strong (lel � L) and
weak (lel 	 L) electric fields.

7. Conclusions

In summary, we have studied the optical conductivity of single-
layer and bilayer graphene. To do this a modification of
the method proposed in [18] was used. This modification
allowed us to investigate how the ac electric field affects the
dynamics of the electron–hole pair creation in graphene: there
is a crossover from a nonlinear to a linear regime when the
frequency of the external electric field is increased. It also

allowed to consider some finite size effects and to propose a
mechanism of transition from σmin

1 to σmin
2 in clean graphene.

In order to achieve this transition a special configuration needs
to be considered (no such configuration is needed for dirty
graphene [20]). In section 5 p–n junctions in bilayer graphene
are studied and it is shown that the rate of electron–hole pair
creation in a static electric field is proportional to E

4
3 , whereas

for single-layer graphene it is proportional to E
3
2 . It is not

known how screening effects and generating a gap in bilayer
graphene (by applying an electric field perpendicular to the
graphene surface) modify this result. Then a study of transport
in carbon nanotubes is presented. Since the conductivities
for strong (lel � L) and weak (lel 	 L) electric fields are
the same (e2/h per conduction channel), a question arises:
what is the conductivity for intermediate values of the electric
field? Using the Luttinger liquid theory one can show that the
conductivity does not depend on the electric field strength. It
seems, therefore, that there are no nonlinear effects in carbon
nanotubes (at least in the approximation where the electrons
are treated as non-interacting and where the linear dispersion
of quasiparticles is justified).
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